LESSON 10: DERIVATIVES OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Objectives:

- 1. To derive and use the derivatives of the exponential functions of the form e^x and a^x
- 2. To derive and use the derivatives of logarithmic functions of the form $\ln x$ and $\log_a x$

Recall

$$\lim_{t\to 0} (1+t)^{\frac{1}{t}} = e \approx 2.71828182845904523$$

or 2.7 A. Jackson A. Jackson Isosc. Rt. Triangle Michael Jordan

Look at the graphs of $f(x) = e^x$ and $g(x) = \ln x$.

How is it evident that they are inverses of each other?

Show algebraically that f(x) and g(x) are inverses of each other.

Derivations

What is
$$\frac{d}{dx} \ln x$$
?

What is
$$\frac{d}{dx}e^x$$
?

Derivatives, Lesson 10, cont.

Other related derivatives

$$1. \ \frac{d}{dx}e^u = e^u \frac{du}{dx}$$

1.
$$\frac{d}{dx}e^{u} = e^{u}\frac{du}{dx}$$
 2. $\frac{d}{dx}\ln u = \frac{1}{u}\cdot\frac{du}{dx}$

$$3. \ \frac{d}{dx}a^x = a^x \ln a$$

3.
$$\frac{d}{dx}a^x = a^x \ln a$$
 4. $\frac{d}{dx}a^u = a^u \ln a \frac{du}{dx}$

$$5. \ \frac{d}{dx}\log_a x = \frac{1}{x\ln a}$$

5.
$$\frac{d}{dx}\log_a x = \frac{1}{x\ln a}$$
 6. $\frac{d}{dx}\log_a u = \frac{1}{u\ln a}\frac{du}{dx}$

Examples

1. Find $D_x y$, given $y = e^{-5x^3}$.

2. Find $D_x y$, given $y = e^{x \ln x^2}$.

- 3. Given $y = \ln(2-3x)^5$, find y'.
- 4. Given $x^2 = \ln(x^2 + y^3 1)$, find $D_x y$.
- 5. Find the equation of the line tangent to the curve $y = \ln x$ when x = 3e.

Derivatives, Lesson 10, Cont.

Problems

1. Find y', given

a.
$$y = \ln \sqrt{x^4 - 4x}$$

b.
$$y = \ln(x\sqrt{x^2 - 1})$$

c.
$$y = \frac{\ln x}{x^2}$$

$$d. \quad y = \ln \sqrt{\frac{x+1}{x-1}}$$

e.
$$y = \ln(e^{x^2})$$

2. If
$$y = e^{ax}$$
, then $\frac{d^n y}{dx^n} =$