3.1	A
A.P.	Calculus

Name	
_	
Partner	

Objective: Explore graphs and derivatives of implicitly defined functions.

Show all work on another sheet of paper

- 1. Given the function defined as $x^2y = 4$.
 - a. Use implicit differentiation to find the derivative y'.
 - b. Find the slope of the tangent line to the curve at (-2 , 1).
 - c. Solve the equation for y in terms of x and graph the function. Show the graph.
 - d. Use your calculator to evaluate the derivative of the function you graphed in part c above at the point (-2, 1) to check your answer in part b.
 - e. Write the equation of the tangent line to $x^2y = 4$ at (-2, 1) and graph it. Show the line on your graph.
- 2. Given the function defined as $y^2(2-x) = x^3$.
 - a. Use implicit differentiation to find the derivative y'.
 - b. Find the slope of the tangent line to the curve at (1, -1).
 - c. Solve the equation for y in terms of x and graph the function. Show the graph.
 - d. Use your calculator to evaluate the derivative of the function you graphed in part c above at the point (1, -1) to check your answer in part b.
 - e. Write the equation of the tangent line to $y^2(2-x) = x^3$ at (1, -1) and graph it. Show the line on your graph
- 3. Given the function defined as $x^2 + xy + y^2 = 7$.
 - a. Use implicit differentiation to find the derivative y'.

 (Hint: Don't forget to use the product rule on xy).
 - b. Find the slope of the tangent line to the curve at (-2 , -1).
 - c. Solve the equation for y in terms of x and graph the function(s). Show the graph.

 (Hint: To solve for y you need to use the quadratic formula. Let a= ____, b= _____)
 - d. Use your calculator to evaluate the derivative of the function you graphed in part c above at the point (-2, -1) to check your answer in part b.
 - e. Write the equation of the tangent line to $x^2 + xy + y^2 = 7$ at (-2, -1) and graph it. Show the line on your graph

 4. Given the function defined as x²y + xy² = 6. a. Use implicit differentiation to find the derivative y¹. (Hint: Don't forget to use the product rule on xy).
b. Find the slope of the tangent line to the curve at (1, -3).
c. Solve the equation for y in terms of x and graph the function(s). Show the graph. (Hint: To solve for y you need to use the quadratic formula. Let a=, b=, c=
d. Use your calculator to evaluate the derivative of the function you graphed in part c above at the point (1, -3) to check your answer in part b.
e. Write the equation of the tangent line to $x^2y + xy^2 = 6$ at (1, -3) and graph it. Show the line on your graph
 Given the function defined as 2exy - x = 0. a. Use implicit differentiation to find the derivative y'. (Hint: Don't forget to use the product rule on xy).
b. Find the slope of the tangent line to the curve at (2,0).
c. Solve the equation for y in terms of x and graph the function(s). Show the graph. (Hint: To solve for y you need to use properties of logs). d. Use your calculator to evaluate the derivative of the function you graphed in part c above at the point (2,0) to check your answer in part b.
e. Write the equation of the tangent line to $2e^{xy} - x = 0$ at (2, 0) and graph it. Show the line on your graph