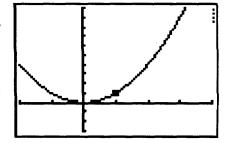
Definition of the Derivative

Lab 5

15

- 1. Run the program **DEFDERIV**. Press **ENTER**].
- 2. Select 1:ENTER F(X) and enter the function x^2 . Press ENTER. Enter Xmin = -2, Xmax = 4, Ymin = -3, Ymax = 10. Press ENTER.
- 3. Select **3:ENTER X-VALUE** and enter **1** for the *x*-value. Press **ENTER**.
- 4. Select **4:DRAW SECANT** and enter **2** for the *h*-value. Press <u>ENTER</u> to see a graph of the function and the secant line. Sketch the secant line on the graph provided. Press <u>ENTER</u> and record the slope of the secant line is the table below.



5. Repeat step 4 for each of the h-values in the table.

x-value	h-value	slope
1	2	
1	1	
1	0.5	
1	0.1	

x-value	h-value	slope
1	- 2	
1	- 1	
1	- 0.5	
1	- 0.1	

- a. As h approached 0, to what value does the slope appear to approach?
- b. What do the secant lines appear to graphically approach?
- 6. Enter a window of [-1, 5] x [-3, 20] and repeat for an x-value of 2.

x-value	h-value	slope
2	2	
2	1	
2	0.5	
2	0.1	

x-value	h-value	slope
2	- 2	
2	- 1	
2	- 0.5	
2.	-01	

- a. As h approached 0, to what value does the slope appear to approach?
- b. What do the secant lines appear to graphically approach?
- 7. Enter a window of $[-2, 3] \times [-1, 8]$ and repeat for an x-value of 0.5.

x-value	h-value	slope
0.5	2	
0.5	1	
0.5	0.5	
0.5	0.1	

x-value	h-value	slope
0.5	- 2	
0.5	- 1	
0.5	- 0.5	
0.5	- 0.1	

- a. As h approached 0, to what value does the slope appear to approach?
- b. What do the secant lines appear to graphically approach?

8. Enter a window of $[-5, 1] \times [-2, 20]$ and repeat for an x-value of -2.

x-value	h-value	slope
-2	2	
-2	1	
-2	0.5	
-2	0.1	

x-value	h-value	slope
-2	- 2	
-2	- 1	
-2	- 0.5	
-2	- 0.1	

- a. As h approached 0, to what value does the slope appear to approach?
- b. What do the secant lines appear to graphically approach?
- 9. Compare the values of x to that of the slopes in each part a. What pattern for the value of the slope do you see?
- 10. If the derivative is defined to be the slope of a line tangent to the graph of f at a point x as well as $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$, make a conjecture about the exact value of the derivative of f.

$$f'(x) = \underline{\hspace{1cm}}$$

11. Repeat for the function $f(x) = x^3$. Enter a window of [-3, 3] x [-10, 10].

x-value	h-value	slope
1	1	
1	0.1	
1	0.01	

x-value	h-value	slope
1	- 1	
1	- 0.1	
1	- 0.01	

- a. As h approached 0, to what value does the slope appear to approach?
- b. What do the secant lines appear to graphically approach?

x-value	h-value	slope
0.5	1	
0.5	0.1	
0.5	0.01	

x-value	h-value	slope
0.5	-1	
0.5	- 0.1	
0.5	- 0.01	

- c. As h approached 0, to what value does the slope appear to approach?
- d. What do the secant lines appear to graphically approach?

x-value	h-value	slope
-1	1	
-1	0.1	
-1	0.01	

x-value	h-value	slope
-1	-1	
-1	- 0.1	
-1	- 0.01	

- e. As h approached 0, to what value does the slope appear to approach?
- f. What do the secant lines appear to graphically approach?
- 12. Compare the values of x to that of the slopes in parts a, c, and e. Make a conjecture about the exact value of the derivative of $f(x) = x^3$.

$$f'(x) = \underline{\hspace{1cm}}$$

13. Repeat for the function $f(x) = x^4$. Enter a window of [-3, 3] x [-5, 20].

x-value	h-value	slope
1	1	
1	0.1	
1	0.01	

x-value	h-value	slope
1	-1	
1	- 0.1	
1	- 0.01	

- a. As h approached 0, to what value does the slope appear to approach?
- b. What do the secant lines appear to graphically approach?

x-value	h-value	slope
0.5	1	
0.5	0.1	
0.5	0.01	

x-value	h-value	slope
0.5	-1	
0.5	- 0.1	
0.5	- 0.01	

- c. As h approached 0, to what value does the slope appear to approach?
- d. What do the secant lines appear to graphically approach?

x-value	h-value	slope
-1	1	
-1	0.1	
-1	0.01	

x-value	h-value	slope
-1	-1	
-1	- 0.1	
-1	- 0.01	

- e. As h approached 0, to what value does the slope appear to approach?
- f. What do the secant lines appear to graphically approach?

14.	Compare the values of x to that	of the slopes in parts a, c, and e.	Make a conjecture about the
	exact value of the derivative of	$f(x) = x^4.$	

$$f'(x) = \underline{\hspace{1cm}}$$

15. Repeat for the function $f(x) = 2x^2$. Enter a window of [-3, 3] x [-2, 10].

x-value	h-value	slope
1	1	
1	0.1	
1	0.01	

x-value	h-value	slope
1	-1	
1	- 0.1	
1	- 0.01	

- a. As h approached 0, to what value does the slope appear to approach?
- b. What do the secant lines appear to graphically approach?

x-value	h-value	slope
0.5	1	
0.5	0.1	
0.5	0.01	

x-value	h-value	slope
0.5	-1	
0.5	- 0.1	
0.5	-0.01	

- c. As h approached 0, to what value does the slope appear to approach?
- d. What do the secant lines appear to graphically approach?

x-value	h-value	slope
-1	1	
-1	0.1	
-1	0.01	

x-value	h-value	slope
-1	-1	
-1	- 0.1	
-1	- 0.01	

- e. As h approached 0, to what value does the slope appear to approach?
- f. What do the secant lines appear to graphically approach?
- 16. Compare the values of x to that of the slopes in parts a, c, and e. Make a conjecture about the exact value of the derivative of $f(x) = 2x^2$.

$$f'(x) = \underline{\hspace{1cm}}$$

17. Given $f(x) = 3x^2 - 2x - 3$, what conjecture can you make about the derivative?

$$f'(x) = \underline{\hspace{1cm}}$$