An Unusual Function

1. The function *f* drawn above would be difficult to describe algebraically; nevertheless, it has interesting geometric features for which calculus provides descriptions. Using the textbook definitions and some freedom of artistic judgment, name the value(s) of *x* for:

(a) zeros of $f(x)$
(b) points of discontinuity of <i>f</i>
(c) critical points
(d) intervals over which <i>f</i> increases
(e) intervals over which f decreases
(f	relative maxima
(g) absolute maxima
(h) relative minima
(i)	absolute minima
(j	intervals over which f is concave up
(k) intervals over which <i>f</i> is concave down
(1)	points of inflection
2. (a) Find the equation of any horizontal asymptotes
(b) Find the equation of any vertical asymptote(s)

- **3.** Find the *x*-coordinate of each point of discontinuity of *f*'.
- **4.** Find the *x*-coordinate of each critical point of *f* '.
- 5. Sketch f' on the same graph as f. (You will need to approximate the range extent of f'(x) as you graph.)