An Unusual Function

1. The function f drawn above would be difficult to describe algebraically; nevertheless, it has interesting geometric features for which calculus provides descriptions. Using the textbook definitions and some freedom of artistic judgment, name the value(s) of x for:
(a) zeros of $f(x)$
(b) points of discontinuity of f \qquad
(c) critical points \qquad
(d) intervals over which f increases \qquad
(e) intervals over which f decreases \qquad
(f) relative maxima \qquad
(g) absolute maxima \qquad
(h) relative minima \qquad
(i) absolute minima \qquad
(j) intervals over which f is concave up \qquad
(k) intervals over which f is concave down \qquad
(l) points of inflection \qquad
2. (a) Find the equation of any horizontal asymptotes
(b) Find the equation of any vertical asymptote(s)
\qquad
3. Find the x-coordinate of each point of discontinuity of f^{\prime}. \qquad
4. Find the x-coordinate of each critical point of f^{\prime}. \qquad
5. Sketch f^{\prime} on the same graph as f. (You will need to approximate the range extent of $f^{\prime}(x)$ as you graph.)
